Amortized Noise

Ian Parberry

Technical Report LARC-2013-03

Laboratory for Recreational Computing
Department of Computer Science & Engineering
University of North Texas
Denton, Texas, USA

September, 2013
Amortized Noise

Ian Parberry
Department of Computer Science & Engineering
University of North Texas
Denton, TX, 76203–5017
URL: http://larc.unt.edu/ian

Abstract—A new noise generation algorithm called amortized noise generates smooth noise using dynamic programming techniques to amortize the cost of floating point multiplications over neighboring points. The amortized 2D noise algorithm uses a factor of $17/3 \approx 5.67$ fewer floating point multiplications than the 2D Perlin noise algorithm, resulting in a speedup by a factor of 3 in practice on current desktop computing hardware. The amortized 3D noise algorithm uses a factor of $40/7 \approx 5.71$ fewer floating point multiplications than the 3D Perlin noise algorithm, but the increasing overhead for the initialization of tables limits the speedup factor achieved in practice to around 2. In addition to being significantly faster, amortized noise is less prone to repeat at regular intervals than Perlin noise, and it is smoother since it uses quintic splines in place of cubic splines.

Index Terms—Amortized analysis, dynamic programming, infinite noise, Perlin noise, Simplex noise.

I. INTRODUCTION

Perlin noise [1] was developed as a source of smooth random noise for use in applications such as procedural texture generation and modeling (see, for example, Ebert et al. [2]). The code is heavily optimized since applications typically call it often. Although the results of each call to the Perlin noise function are computed independently of every other call, most applications use it to fill in a grid of noise values at regularly spaced points. We are able to take advantage of this typical call pattern to amortize the computation cost of Perlin noise using dynamic programming techniques\(^1\). We will refer to our new algorithm as amortized noise.

The remainder of this paper is divided into six main sections. Section II gives some definitions and notation to be used throughout the rest of the paper. Section III describes the amortized 2D noise generator in some detail and includes a sketch of a correctness proof. Section IV describes the amortized 3D noise generator in slightly less detail. Section V contains some observations about infinite amortized noise. For more information about amortized noise, including source code, see Parberry [4].

II. NOTATION

Let \(\mathbb{R} \) denote the set of real numbers, and \(\mathbb{N} \) denote the set of natural numbers starting at zero. Let \(\mathbb{U} \) denote the real line segment from 0 to 1 and \(\mathbb{U}^\pm \) denote the real line segment from \(-1\) to \(1\), that is, \(\mathbb{U} = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\} \), \(\mathbb{U}^\pm = \{i/n \mid i \in \mathbb{N}\} \).

\(^1\) Cormen et al. [3] attribute the term amortized to Danny Sleator and Robert Tarjan, and the term dynamic programming to R. Bellman in 1955.

III. 2D NOISE

The 2D Perlin noise algorithm computes a function \(\mathcal{P}_2 : \mathbb{U} \times \mathbb{U} \rightarrow \mathbb{U}^\pm \). To compute \(\mathcal{P}_2(x, y) \) it chooses pseudorandom gradients \(\vec{g}_{00} = [x_{00}, y_{00}] \), \(\vec{g}_{01} = [x_{01}, y_{01}] \), \(\vec{g}_{10} = [x_{10}, y_{10}] \), and \(\vec{g}_{11} = [x_{11}, y_{11}] \) at integer points [0, 0], [0, 1], [1, 0], and [1, 1] (respectively) and interpolates and smooths between them as shown in Fig. 1. Table II shows some pseudocode for one octave of the 2D Perlin noise generator on input \(\vec{p} = [x, y] \in \mathbb{U} \times \mathbb{U} \). It uses a cubic spline function \(s_{\text{curve}}(x) = x^2(3 - 2x) \) and a linear interpolation function \(\text{lerp}(\epsilon, x, y) = x + \epsilon(y - x) \). While the Perlin noise algorithm computes \(u_\delta(\vec{p}) \) for any vector \(\vec{p} \in \mathbb{U} \times \mathbb{U} \), in practice we only need to compute it for \(\vec{p} \in \mathbb{U}_n \times \mathbb{U}_n \) for some \(n \in \mathbb{N} \). Call \(n \) the noise granularity and let \(\delta = 1/n, \delta \in \mathbb{R} \).

The remainder of this section is divided into three subsections. Section III-A sketches the mathematical background

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Set & Definition \\
\hline
\(\mathbb{N} \) & Natural numbers \(\cup \{0\} \) \\
\(\mathbb{R} \) & Real numbers \\
\(\mathbb{U} \) & \(\{x \in \mathbb{R} \mid 0 \leq x \leq 1\} \) \\
\(\mathbb{U}^\pm \) & \(\{x \in \mathbb{R} \mid -1 \leq x \leq 1\} \) \\
\(\mathbb{U}_n \) & \(\{i/n \mid i \in \mathbb{N}\} \cap \mathbb{U} \) \\
\hline
\end{tabular}
\caption{The sets used in this paper and their definitions.}
\end{table}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{2D_Perlin_noise_interpolator}
\caption{2D Perlin noise interpolates and smooths between pseudorandom gradients at integer grid points.}
\end{figure}
for amortized 2D noise and a proof of its correctness. Section III-B describes the implementation of amortized 2D noise. Section III-C contains both a theoretical and an experimental analysis of the run-time of amortized 2D noise compared to 2D Perlin noise.

A. Amortized 2D Noise

Amortized 2D noise follows the general structure of the Perlin noise algorithm shown in Table II, with the following optimizations. The s_curve function calls in Lines 1 and 2 are replaced with a table look-up, since only the n + 1 values of s_curve(x) for x ∈ U_n are needed. In Lines 3–4 the dot products are replaced by additions as follows.

Definition 1. For all \(\vec{p} \in U_n \times U_n \), define \(u_a(\vec{p}) \) as follows.

1. \(u_a(0, 0) = 0 \).
2. For all \(\gamma \in U_n \), \(u_a(0, \gamma) = \gamma y_{00} \).
3. For all \(\gamma \in U_n \), \(u_a(\gamma, 0) = \gamma y_{00} \).
4. For all \(\gamma \in U_n \),
 \[
 u_a(0, \gamma) = u_a(0, \gamma - \delta) + u_a(0, \gamma).
 \]
5. For all \(\gamma \in U_n \),
 \[
 u_a(\gamma, 0) = u_a(\gamma - \delta, 0) + u_a(\gamma, 0).
 \]
6. For all \(\gamma_0, \gamma_1 \in U_n \),
 \[
 u_a(\gamma_0, \gamma_1) = u_a(\gamma_0, 0) + u_a(0, \gamma_1).
 \]

Theorem 1. For all \(\vec{p} \in U_n \times U_n \), \(u_a(\vec{p}) = \vec{p} \cdot \vec{g}_{01} \).

Proof: We are required to prove that for all \(i, j \in N \) such that \(0 \leq i, j \leq n \), \(u_a(i\delta, j\delta) = (x_{00}i + y_{00}j)\delta \). When \(i = j = 0 \) the claim is true by Definition 1.1.

We will now prove the claim for \(i = 0 \) and all \(j > 0 \), that is, for all \(j \in N \) such that \(1 \leq j \leq n \), \(u_a(0, j\delta) = y_{00}j\delta \). The proof is by induction on \(j \). When \(j = 1 \) the claim is true by Definition 1.3. Now suppose \(j > 1 \) and that the claim is true for \(j \), that is, \(u_a(0, j\delta) = y_{00}j\delta \). We are required to prove that the claim is true for \(j + 1 \), that is, \(u_a(0, (j + 1)\delta) = y_{00}(j + 1)\delta \).

Now,

\[
\begin{align*}
 u_a(0, (j + 1)\delta) &= u_a(0, j\delta) + u_a(0, j\delta) \quad \text{(by Definition 1.4)} \\
 &= u_a(0, j\delta) + y_{00}j\delta \quad \text{(by Definition 1.3)} \\
 &= y_{00}j\delta + y_{00}j\delta \quad \text{(by induction)} \\
 &= y_{00}(j + 1)\delta \quad \text{(as required)}.
\end{align*}
\]

The proof of the claim for \(i > 0 \), \(j = 0 \) is similar to the above, substituting Definition 1.5 and Definition 1.2 for Definition 1.4) and Definition 1.3, respectively.

Now suppose \(0 < i, j \leq n \). Then,

\[
\begin{align*}
 u_a(i\delta, j\delta) &= u_a(i\delta, 0) + u_a(0, j\delta) \quad \text{(by Definition 1.6)} \\
 &= x_{00}i\delta + y_{00}j\delta \quad \text{(by the above)} \\
 &= g_{00} \cdot \vec{i} \quad \text{(as required)}.
\end{align*}
\]

This completes the proof.

Definition 2. For all \(\vec{p} \in U_n \times U_n \), define \(v_a(\vec{p}) \) as follows.

1. \(v_a(0, 1) = 0 \).
2. For all \(\gamma \in U_n \), \(v_a(0, 1 - \gamma) = \gamma x_{10} \).
3. For all \(\gamma \in U_n \), \(v_a(\gamma, 1) = \gamma y_{10} \).
4. For all \(\gamma \in U_n \),
 \[
 v_a(\gamma, 1) = v_a(\gamma - \delta, 1) + v_a(\gamma, 1).
 \]
5. For all \(\gamma \in U_n \),
 \[
 v_a(\gamma, 0) = v_a(\gamma + \delta, 0) + v_a(1 - \gamma, 0).
 \]
6. For all \(\gamma_0, \gamma_1 \in U_n \),
 \[
 v_a(\gamma_0, \gamma_1) = v_a(\gamma_0, 1) + v_a(0, \gamma_1).
 \]

Theorem 2. For all \(\vec{p} \in U_n \times U_n \), \(v_a(\vec{p}) = \vec{p} \cdot \vec{g}_{10} \).

The proof is similar to that of Theorem 1.

Definition 3. For all \(\vec{p} \in U_n \times U_n \), define \(v_b(\vec{p}) \) as follows.

1. \(v_b(1, 0) = 0 \).
2. For all \(\gamma \in U_n \), \(v_b(1, 1 - \gamma) = \gamma x_{11} \).
3. For all \(\gamma \in U_n \), \(v_b(1 - \gamma, 0) = \gamma y_{11} \).
4. For all \(\gamma \in U_n \),
 \[
 v_b(\gamma, 0) = v_b(\gamma + \delta, 0) + v_b(1 - \gamma, 0).
 \]
5. For all \(\gamma \in U_n \),
 \[
 v_b(1, \gamma) = v_b(1, \gamma - \delta) + v_b(1, \gamma).
 \]
6. For all \(\gamma_0, \gamma_1 \in U_n \),
 \[
 v_b(\gamma_0, \gamma_1) = v_b(\gamma_0, 1 - \delta) + v_b(1, \gamma_1).
 \]

Theorem 3. For all \(\vec{p} \in U_n \times U_n \), \(v_b(\vec{p}) = \vec{p} \cdot \vec{g}_{10} \).

The proof is similar to that of Theorem 1.

Definition 4. For all \(\vec{p} \in U_n \times U_n \), define \(v_b(\vec{p}) \) as follows.

1. \(v_b(1, 1) = 0 \).
2. For all \(\gamma \in U_n \), \(v_b(1, 1 - \gamma) = \gamma x_{11} \).
3. For all \(\gamma \in U_n \), \(v_b(1 - \gamma, 1) = \gamma y_{11} \).
4. For all \(\gamma \in U_n \),
 \[
 v_b(\gamma, 1) = v_b(\gamma + \delta, 0) + v_b(\gamma, 0).
 \]
5. For all \(\gamma \in U_n \),
 \[
 v_b(1, \gamma) = v_b(1, \gamma + \delta) + v_b(1, 1 - \gamma).
 \]
6. For all \(\gamma_0, \gamma_1 \in U_n \),
 \[
 v_b(\gamma_0, \gamma_1) = v_b(\gamma_0, 1 - \delta) + v_b(1, \gamma_1).
 \]

Theorem 4. For all \(\vec{p} \in U_n \times U_n \), \(v_b(\vec{p}) = \vec{p} \cdot \vec{g}_{11} \).

The proof is similar to that of Theorem 1.
These are used to initialize the interpolated gradient tables as follows.

| FillUp(uax, x00); FillDn(vax, x01); FillUp(ubx, x10); FillDn(vbx, x11); FillUp(uay, y00); FillDn(uby, y10); FillUp(vay, y01); FillDn(vby, y11); |

Once initialization is complete, we can generate an $n \times n$ noise grid with the following function.

```c
void anoise2(float*** cell) {
    float u, v, a, b;
    for(int i=0; i<=n; i++)
        for(int j=0; j<=n; j++){
            u = uax[j] + uay[i];
            v = vax[j] + vay[i];
            a = lerp(spline[j], u, v);
            u = ubx[j] + uby[i];
            v = vbx[j] + vby[i];
            b = lerp(spline[j], u, v);
            cell[i][j] = lerp(spline[i], a, b);
        }
} //for
} //anoise2
```

Notice that the only floating point multiplications used are for the three linear interpolations.

C. Analysis of Amortized 2D Noise

The 2D Perlin noise algorithm uses 17 floating point multiplications per point per octave (see Table IV), and thus requires $17n^2$ floating point multiplications per octave to find noise values for an $n \times n$ grid. The techniques described in the previous section replace the cubic splines and dot products in Table IV with table lookups and floating point additions. We are left with a single floating point multiplication per point for each of three linear interpolations. The number of floating point multiplications required to generate noise on an $n \times n$ grid is therefore $3n^2 + O(n)$ per octave, a reduction in the number of floating point multiplications by a factor of $17/3 \approx 5.67$ over 2D Perlin noise.

Since a good deal of the computation time used by Perlin noise is taken up by floating point multiplications, we can achieve a significant speedup factor in practice. Whether we can come close to the theoretical factor of 5.7 depends on the speed of floating point multiplications compared to other

<table>
<thead>
<tr>
<th>Task</th>
<th>Lines</th>
<th>Number</th>
<th>Mults</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic spline</td>
<td>1,2</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Linear interpolation</td>
<td>3-5</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Dot product</td>
<td>3,4</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

TABLE IV: Number of floating point multiplications used by 2D Perlin noise per point per octave. The line numbers in the second column refer to the algorithm in Table II.
Fig. 2: Running time for the Perlin and amortized noise algorithms measured in seconds for computing 2D noise values for grids of $n \times n$ points, where $512 \leq n \leq 8192$ using single precision floating point arithmetic.

Fig. 3: Speedup factor for the amortized noise algorithm over the Perlin noise algorithm for a grid of $n \times n$ points, where $512 \leq n \leq 8192$.

Fig. 4: Speedup factor for the amortized noise algorithm over Perlin noise for a grid of $n \times n$ points, where $8 \leq n \leq 128$.

operations. To test this, we measured the runtime of our algorithm using both single and double precision floating point arithmetic on an Intel® Core™ i7-3930K running at 4.2 GHz. We found that on this hardware amortized noise is approximately 3–3.5 times faster than Perlin noise.

Fig. 2 shows the run-time in milliseconds for computing 2D Perlin and amortized noise on an $n \times n$ grid for $512 \leq n \leq 8192$ in steps of 512. Fig. 3 shows the ratio of Perlin noise runtime divided by the amortized noise runtime for both single and double precision arithmetic.

The overhead of initializing the new arrays becomes an increasingly significant fraction of the overall runtime as n decreases. Repeating our experiments for small n, we found that amortized 2D noise is faster for all $n > 1$, but by a smaller factor than for large n. For example, Fig. 4 shows the ratio of the runtime of Perlin noise divided by that of amortized noise on an $n \times n$ grid for $8 \leq n \leq 128$ in steps of 8.

We can see from Fig. 3 and Fig. 4 that amortized noise has more of an advantage over Perlin noise when both algorithms use double precision floating point arithmetic because double precision multiplications cost more time than single precision ones. We conjecture that as floating point multiplications become more expensive, amortized 2D noise will achieve a speedup factor approaching 5.

IV. 3D NOISE

The 3D Perlin noise algorithm computes a function $\mathcal{P}_3 : \mathbb{U}^3 \to \mathbb{U}^3$. To compute $\mathcal{P}_3(x, y, z)$ it picks pseudorandom gradients $\mathbf{g}_{ijk} = [x_{ijk}, y_{ijk}, z_{ijk}]$ at the 8 integer points $[i, j, k]$ (respectively), for $i, j, k \in \{0, 1\}$, and interpolates and smooths between them. The amortized 2D noise algorithm from Section IV generalizes to 3D in a fairly straightforward manner (code is provided online in Parberry [4]). Instead of 8 interpolated gradient tables, there are 24.

The 3D Perlin noise algorithm uses 40 floating point multiplications per point per octave (see Table IV), and thus requires $40n^3$ floating point multiplications per octave to find noise values for an $n \times n \times n$ grid. The techniques described in the previous section replace the cubic splines and dot products in Table V with table lookups and floating point additions. We are left with a single floating point multiplication per point for each of 7 linear interpolations. The number of floating point multiplications required to generate noise on an $n \times n \times n$ grid is therefore $7n^2 + O(n)$ per octave, a reduction in the number of floating point multiplications by a factor of $40/7 \approx 5.71$ over 2D Perlin noise.

Fig. 5 shows the run-time in milliseconds for computing 3D Perlin and amortized noise on an $n \times n \times n$ grid for $32 \leq n \leq 512$ in steps of 32. Fig. 6 shows the ratio of the Perlin noise runtime divided by the amortized noise runtime. We can see that the overhead for initializing the large number of arrays is beginning to become a more significant fraction of the runtime. The results were much the same for both single and
TABLE V: Number of floating point multiplications used by 3D Perlin noise per point per octave.

<table>
<thead>
<tr>
<th>Task</th>
<th>Number</th>
<th>Mults</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic spline</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Linear interp.</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Dot product</td>
<td>8</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using a minimal perfect hash function for m-bit integers, that is, a hash function whose domain and range are exactly the set of m-bit integers. (For more information about hash functions, see, for example, Knuth [6].) However, this would slow down the Perlin noise generator significantly.

Amortized noise takes less of a speed hit since the cost of computing gradients at integer grid points is amortized over the computation at the remaining points. Take, for example, amortized 2D noise as described in Section III. Let $h : \mathbb{N} \to \mathbb{N}$ be a hash function. For all $n \in \mathbb{N}$, define $h : \mathbb{N}^2 \to \{0, 1, \ldots, n-1\}$ to be $h(x, y) = h(h(x) + y) \mod n$. Compute gradients $g(\vec{p}) \in \mathbb{N} \times \mathbb{N}$ at integer points $\vec{p} \in \mathbb{N} \times \mathbb{N}$ as follows. Choose an angular granularity $n \in \mathbb{N}$ and let $\{\hat{u}_0, \hat{u}_1, \ldots, \hat{u}_{n-1}\}$ be the set of n uniformly spaced vectors around the unit circle. We then define $\hat{g}(\vec{x}) = \hat{u}_{h(x,y)}$. The resulting noise will be, if not infinite, then as close as possible to being infinite depending on the quality of the hash function. We have had particular success with a quadratic hash function $h(x) = px^2$ for small prime numbers p.

VI. Conclusion

While the Perlin noise algorithm provides random access to a source of smooth noise, amortized noise saves computation by computing noise values in a nearby neighborhood. Amortized noise is only useful as a sequential computation running on a traditional von Neumann architecture CPU. The running time of shader implementations of Perlin noise (such as Green [7]) is dominated by the cost of texture addressing rather than floating point multiplication, and hence will see little or no benefit from amortization.

Interesting open problems include a full analysis of candidate hash functions for infinite amortized noise. The quadratic hash function suggested in this paper does better than linear congruential hash functions, but it does produce some visual artifacts. A quadratic congruential hash function $h(x) = px^2 \mod p$ for prime numbers p around 2^{32} for 32-bit arithmetic has fewer visual artifacts, but costs slightly more to compute.

References