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A number of trivalent graphs, in particular variants of the cube-connected cycles and shuffle-exchange, have become popular 
as interconnection patterns for synchronous parallel computers. We consider highly-structured interconnection patterns that 
allow large parallel machines to be constructed from isomorphic copies of smaller ones, plus (perhaps) a few extra processors. 
If only a small number of extra processors are added, we call the interconnection pattern recurrent. If no extra processors are 
added, we call it recursive. We show that a constant-degree recursive interconnection pattern is, in a sense, not as versatile as 
the cube-connected cycles or shuffle-exchange, and we present a trivalent recurrent interconnection pattern that is. 
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1. Introduction 

An interconnection pattern is an infinite series 
G = (G,, G,, G,, . . . ) of finite graphs. Graph G, 
represents a parallel machine, each vertex a 
processor, and each edge a communication link 
between processors. The processor bound P(n) is 
the number of vertices in G, .as a function of n. 
For an interconnection pattern to be of any practi- 
cal use, the following properties must hold: 

(1) The degree of G, is constant (i.e., indepen- 
dent of n). 

(2) G, is easy to compute (as a function of n). 
(3) There is a constant c > 0 such that, for all 

n 2 1, P(n) < c P(n - 1). 
The literature already provides us with useful 

interconnection patterns. Preparata and Vuillemin 
[5] studied a useful class of algorithms (which they 
call composite algorithms) for the multi-dimen- 
sional cube. Although this interconnection pattern 
has nonconstant degree, they presented a practical 
interconnection pattern, called the cube-connected 
cycles, which has the ability to simulate composite 

algorithms without asymptotic time loss. We call a 
practical interconnection pattern with this prop- 
erty composite. The shuffle-exchange interconnec- 
tion pattern [7] is also easily seen to be composite. 
There are efficient composite algorithms for many 
useful data routing problems (such as sorting and 
performing permutations), which can thus effi- 
ciently be implemented on either the cube-con- 
nected cycles or shuffle-exchange. 

Loosely speaking, an interconnection pattern is 
said to be recurrent if each graph G, is made up 
of many isomorphic copies of smaller graphs G, 
where m -C n. Both the cube-connected cycles and 
shuffle-exchange are composite, but neither is re- 
current. Meyer auf der Heide [2,3] has given a 
degree-4 interconnection pattern that is both com- 
posite and recurrent. We present a degree-3 inter- 
connection pattern with the same properties. Each 
G, is made up of at least P(n)/(2P(m)) copies of 
G,. Also, we find that it is impossible to design a 
composite interconnection pattern with the prop- 
erty that each G, is made up of exactly P(n)/P(m) 
copies of G,. We call an interconnection pattern 
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with the latter property recursive. is counted twice, so S, = 2E,.) 
The main body of this paper is divided into two 

sections. In Section 2 we demonstrate that no 
recursive interconnection pattern can permute n 
items in O(log n) time, a task that is well within 
the abilities of a composite interconnection pat- 
tern. In Section 3 we give a composite recurrent 
interconnection pattern, which we call the cube- 
connected lines. A preliminary version of the re- 
sults of this paper has appeared in [4]. 

2. Recursive interconnection patterns 

We claim that, for n >, 1, Ek = Q(c”/n). Con- 
sider one of the subgraphs of G, isomorphic to 
G,_,. Pick a permutation that takes a data item 
from each vertex of the subgraph (there are c” -I 
of them) to a vertex of G, outside that subgraph. 
These data items must pass along the edges of GA, 
since these are the only edges linking the subgraph 
with the rest of G,. Thus, in one step at most E’” 
items can be moved. By hypothesis we can move 
all the items in O(n) steps. There are en-i items to 
be moved. Hence, C” = O(E’,n). This is sufficient 
to prove the above claim. 

Therefore. 
An interconnection pattern G = (G,, Gi,. . .) 

with P(n) processors is said to be recurrent if, for 
all n,m with 0 d m 4 n, G, has Q(P(n)/(P(m)) 
disjoint subgraphs isomorphic to G,. The simplest 
form of recurrence one might choose is to have G, 
constructed from precisely P(n)/P(m) such sub- 
graphs. Unfortunately, this type of recurrent inter- 
connection pattern is much less powerful than the 
shuffle-exchange [7] or cube-connected cycles [5] 
interconnection patterns. 

E,=E;+cE,_, 

n-l 

= c ci E’_. 
” I 

i=l 

/(n - i) (by the claim) 

Suppose c is a fixed positive integer (indepen- 
dent of n). More precisely, a recursive intercon- 
nection pattern is one in which G, (n > 0) is made 
up of exactly c disjoint copies of G,_, (with some 
fixed graph for G,), joined by extra edges from 
some graph GA. 

Thus, 

rn = EJP, =Q 

Theorem 2.1. A constant degree recursive parallel 
machine with P(n) processors cannot permute P(n) 
items in O(log P(n)) steps. 

which diverges as n -+ co. But this contradicts the 
fact that P,, < id, a constant independent of n. 
Thus, no such parallel machine can exist. •I 

Proof. For a contradiction, suppose G = 

(G,, G,, -. . > is a P(n)-processor, degree-d recur- 
sive interconnection pattern that can be used to 
permute P(n) items in O(log P(n)) time. The fol- 
lowing simple and elegant technique is due to 
Meertens [I]. 

This is in contrast to the corresponding result 
for the cube-connected cycles (see [5]) and 
shuffle-exchange (see [4]). 

3. A recurrent interconnection pattern 

Without loss of generality assume P(0) = 1 (note 
that this means P(n) = c”). For convenience, write 
P,, for P(n). Let E, denote the number of edges in 
G,, E:, denote the number of edges in GA, and 
I, = EJP,. Note that F,, < id. (Let S, be the sum 
over all vertices v in G, of the number of edges 
incident with v. Clearly, S, < d P,. But every edge 

First, let us introduce some useful notation. 
Suppose v and i are nonnegative integers. If i 2 1, 
then let Vi denote the ith least-significant bit in 
the binary representation of v, that is, vi 
= [v/2”-“1 mod 2. Where convenient, we may 
confuse the integer v and a binary representation 
vkv,-I... v1 (where k 2 [log v] + 1) of v. Also, let 
v@ denote the integer that differs from v precisely 
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in the ith (least-significant) bit, that is, vci) = v + 
(- 1)“#2(i - 1). 

The cube-connected cycles CCC, of Preparata 
and Vuillemin [5] is defined as follows. Let r be 
such that 2’-’ +r-l<k<2’+r. CCC, has 
vertex-set 

and each vertex (v, p) is joined to the following 
vertices: 

(i) (vtp+i), p), provided 0 G p < k - r, 
(ii) (v, (p + 1) mod 2’) and 

(iii) (v, (p - 1) mod 2’). 
The first link is called a cube edge, the remaining 
two, cycle edges. CCC, has 2k vertices and has 
degree 3. 

The following is a recurrent interconnection 
pattern that is as powerful as the cube-connected 
cycles, at least in its ability to simulate composite 
algorithms. The cube-connected lines, CCL, (see 
Fig. 1) is simply a copy of CCC, with the edges 
from vertices (v, 0) to (v, 2’ - l), 0 6 v < 2k-’ de- 
leted (we call the remaining cycle edges line edges, 
and the deleted cycle edges external edges). That 
is, the cycles of the cube-connected cycles are 
broken, and thus become lines. CCL, has 2k 
vertices and has degree 3. 

It is fairly easy to see that CCL, is recurrent. 
We need to differentiate the special case of CCL, 
when k is of the form 2’ + r, for some r. In this 
case we call CCL, a fuZl cube-connected lines 
graph. 

CCL, 

ro.0, (LOI 
. . 

CCL2 

(0.01 (1.0) 

I I to,1r rt,u 

(3.2) 

Y 
(3.3) 4 

Fig. 1. The 2, 4, 8, 16, and 32 vertex cube-connected lines graphs, CCL, through CCL,. Line-edges are drawn vertically; the 
remainder are cube-edges. 
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Fig. 2. CCL, has one subgraph isomorphic to CCL,. 

Lemma 3.1. If k = 2’ + r, then CCLL+r has ex- 
actly one subgraph isomorphic to CCL,. 

Proof. Suppose k = 2’ + r. CCL, has vertices (v, p) 
with O<V<~~-‘, O<p<2’. Vertex (v,p) is 
joined to the following vertices: 

(i) (vcp+ l), p), 0 < v < 2k-r, 0 <p < 2’, 
(ii) (v, p + l), 0 G v < 2k-r, 0 < p < 2’ - 1, and 

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’. 

ccLk+l has vertices (v, p) with 0 G v < 2k-r, 0 < 
p < 2’+r. Vertex (v, p) is joined to the following 
vertices: 

(i) (vcp+l), p), 0 < v < 2k-r, 0 < p < 2’, 
(ii) (v, p + l), 0 < v < 2k-r, 0 < p < 2’+r - 1, 

and 

Proof. Without loss of generality, suppose k < 2’ 
+ r. CCL, has vertices (v, p) with 0 d v< 2k-r, 
0 G p < 2’. Vertex (v, p) is joined to the following 
vertices: 

(i) (vcp + I), p),O~v<2~-‘,O<p<k-r, 
(ii) (v, p + l), 0 G v < 2k-r, 0 < p < 2’ - 1, and 

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’. 

ccLk+, has vertices (v, p) with 0 <v < 2k-r+‘, 
0 G p < 2’. Vertex (v, p) is joined to the following 
vertices: 

(i) (vcp+ l), p), OGV<~~-~+‘, O<p<k-r 

+ 1, 
(ii) (v, p + l), 0 < v < 2k-r+1, 0 < p < 2’ - 1, 

and 
(iii) (v, p - l), 0 < v < 2k-r+1, 0 < p < 2’. 

Thus, deleting the cube-edges from (v, p) to 

(v (p+l) p) with p = k - r from CCL, + I gives tW0 
disjoin; graphs isomorphic to CCL, (see Fig. 3). 
0 

(iii) (v, p - l), 0 < v < 2k-r, 0 < p < 2’+r. Lemma 3.3. If k = 2’+ r and j = 2’+ s, where 
Thus, CCL, looks exactly like CCL,_ r with lines r > s, then CCL, has exactly 2k-j disjoint sub- 
extended to double the length using vertices graphs isomorphic to CCL,. 

Fig. 3. CCL, has two subgraphs isomorphic to CCL,. 
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without cube links (see Fig. 2). So, CCL,+, has 
CXaCtly one subgraph isomorphic to CCL,. 0 

Lemma 3.2. If k is not of the form 2’ + r, then 

ccLk+l has two disjoint subgraphs isomorphic to 
CCL,. 

CCL, ra 
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Fig. 4. CCL, has four subgraphs isomorphic to CCL,. 

Proof. Suppose k = 2’ + r and j = 2” + s for some 
r 2 s 2 0. CCL, has vertices (v, p), 0 < v < 22s, 0 < 
p < 2”. Vertex (v, p) is joined to the following 
vertices: 

(i) (vfp+l), p), 0 < v < 22s, 0 < p < 2”, 
(ii) (v, p + l), 0 < v < 22s, 0 G p < 2” - 1, and 

(iii) (v, p - l), 0 < v < 22s, 0 < p < 2”. 
CCL, has vertices (v, p), 0 < v < 22’, 0 G p < 2’. 
Vertex (v, p) is joined to the following vertices: 

(i) (vtp+l), p), 0 < v < 22’, 0 < p < 2’, 
(ii) (v, p + l), 0 < v < 22r, 0 < p < 2’ - 1, and 

(iii) (v, p - l), 0 < v < 22r, 0 < p < 2’. 
Deleting the line-edges between vertices (v, i 2’ - 
1) and (v, i 2’) for 0 < v < 22r, 0 < i < 2’-‘, breaks 
CCL, into 2k-j graphs isomorphic to CCL, (see 
Fig. 4). Thus, a full CCL, has 2k-’ disjoint sub- 
graphs isomorphic to a full CCL,. 0 

Theorem 3.4. For 0 < j < k, CCL, has at least 
2k-j- ’ disjoint subgraphs isomorphic to CCL,. 

Proof (Sketch). The result easily follows using the 
above lemmas. First, reduce CCL, into subgraphs 
isomorphic to the next smaller full CCL, using 
Lemmas 3.1 and 3.2. If CCL, is encountered along 
the way, then this is sufficient. Next, using Lemma 
3.3, reduce the full CCL immediately below CCL, 
into subgraphs isomorphic to the full CCL im- 
mediately above CCL,. The latter can be reduced 
to CCL, by application of Lemma 3.2. 

In this entire process we only once have to 
reduce a nonfull CCL to subgraphs isomorphic to 
full ones. Thus, CCL, consists of 2k-j-1 sub- 
graphs isomorphic to CCL,. •I 

Note that any attempt to increase the number 
of subgraphs from 2k-j-1 to 2k-’ is doomed to 
failure. For if CCL, had 2k-j subgraphs isomor- 
phic to CCL,, it would then be recursive. Thus, by 

Theorem 2.1 it would be much weaker than the 
cube-connected cycles for computing permuta- 
tions. However, we have the following theorem. 

Theorem 3.5. A cube-connected lines with 2” 
processors can simulate a 2k processor composite 
algorithm without asymptotic time loss. 

Proof. The proof is almost identical to that for the 
cube-connected cycles [5]. In that proof: 

(1) The pipelining phase utilizes a synchronous 
cyclic shift around the cycles. This can be replaced 
with a linear shift along the corresponding lines of 
the cube-connected lines graph, with wrap-around 
at the ends (at most doubling the time require- 
ment). 

(2) Communication within the cycles is per- 
formed using a procedure called LOOPOPER. A 

close examination of this procedure reveals that it 
never uses external edges, and thus can be ex- 
ecuted on the cube-connected lines graph. •1 

Thus, in particular, a parallel machine based on 
the cube-connected lines interconnection pattern 
can permute n items in O(log n) time. 

Reif and Valiant [6] have independently dis- 
covered a graph that is similar to the cube- 
connected lines. 
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