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Abstract

Analog neural networks of limited precision are essentially k-ary neural networks. That
is, their processors classify the input space into k regions using k& — 1 parallel hyperplanes by
computing k-ary weighted multilinear threshold functions. The ability of k-ary neural networks
to learn k-ary weighted multilinear threshold functions is examined. The well known perceptron
learning algorithm is generalized to a k-ary perceptron algorithm with guaranteed convergence
property. Littlestone’s winnow algorithm is superior to the perceptron learning algorithm when
the ratio of the sum of the weights to the threshold value of the function being learned is small.
A k-ary winnow algorithm with a mistake bound which depends on this value and the ratio
between the largest and smallest thresholds is presented.

!On leave from the Mathematical Institute, Belgrade, Yugoslavia.



1 Introduction

In Obradovic and Parberry [8] it was shown that analog neural networks of limited precision are
essentially k-ary neural networks (that is, their processors classify R" into k regions using k — 1
parallel hyperplanes) and their computing power was examined. Here, we investigate their learning
power. One of the results from that reference was that there is no canonical set of threshold values
for a k-ary perceptron when k£ > 3, although they exist for binary and ternary neural networks. This
indicates that learning algorithms for k-ary neural networks which modify only the weights are not
necessary convergent. Here we show that matters can be improved by learning both the thresholds
and the weights. A preliminary version of the results from this paper appear in Obradovic and
Parberry [9].

The main body of this paper is divided into three sections. The first section sketches definitions
of the k-ary neural network model and learning in that model. The second section contains a k-
ary perceptron learning algorithm (derived from the binary perceptron learning algorithm) and its
convergence proof. The third section contains a k-ary winnow algorithm (derived from Littlestone’s
winnow algorithm [2,3]) and its mistake bound proof.

2 A General Framework for Learning

Let £k € N, and Zy = {0,...,k — 1}. A k-ary neural architecture is a k-ary neural network
with the weights, thresholds and initial activation levels left unspecified. That is, it is a 4-tuple
A= (k,V,I,0), where:

k € N is the number of logic levels,
V is a finite set of processors, or gates,
I CV is a set of input processors,
O CV is a set of output processors.
A(a,w, h) denotes the k-ary neural network (k,V,I,0,a,w,h), where
a:V — I — Zy is a set of initial activation levels,
w:V xV — R is a weight assignment,
h:V — RF-1is a threshold assignment.

The processors of a k-ary neural network are relatively limited in computing power. Processor
v € V has k — 1 thresholds hy(v),...,hg—1(v), and if its weighted input sum is between h;(v) and
hi+1(v), it has 7 for output.

More formally, a k-ary function is a function f : Zj} — Zj. Let F}! denote the set of all n-input
k-ary functions. Define ©F : R"tE~1 — FI by ©%(wy,...,wn,h1,... b 1) : R} — Zj, where

n
GZ(wla"' 7wn7h17"' 7hk—1)($17"'7$n) =1 iff hl < sz$l < hi+1-

i=1
Here and throughout this paper, we will assume that hy < ho < ... < hg_1, and for convenience
define hg = —o0 and hy = oo. The set of k-ary weighted multilinear threshold functions is the



union, over all n € N, of the range of ©}. Each processor of a k-ary neural network can compute
a k-ary weighted multilinear threshold function of its inputs.

Let A = (A1, As,...) and f = (f1, fa,...), where A, = (k,V,, I, 0y) is a neural architecture
with ||I]] = n, and f, : R" — Zg. A learning algorithm for f on A is a relativized algorithm L
with an oracle for f which on input n outputs a series of distinct initial activation, weight, and
threshold assignments (ag, wo, ho), (a1, w1, h1),..., (at, we, hy) such that the neural network M, =
Ap(ag, wy, hy) computes f,. We will consider learning algorithms for k-ary weighted multilinear
threshold functions on neural circuits (that is, layered neural networks without feedback).

Resources of interest include those of M,,, and those of L. The former include the size (number of
processors), depth (number of layers), and weight (sum of all the weights) of the circuit. The latter
include the latency and the mistake bound, defined as follows. The latency of learning algorithm
is the worst case running time between the output of one set of assignments and the next. We will
measure unit-cost latency, that is, we will assume that L is implemented on a digital computer with
word-size large enough that each elementary arithmetic and logic operation can be implemented in
constant time. The mistake bound is the worst case total number of distinct assignments output.

If f is a k-ary weighted multilinear threshold function, we say that (wq,...,wp,t1,..., tp_1) €
R™ k=1 is a representation of f iff f = ©F (w1, ..., wn,t1,...,t;_1). Note that each k-ary weighted
multilinear threshold function has many representations.

We will consider the problem of learning k-ary weighted multilinear threshold functions, and for
the most part be concerned with learning them on the minimal architecture consisting of a single
k-ary processor. That is, we will be learning a representation for a k-ary weighted multilinear
threshold function f, given only an oracle for f. All of our learning algorithms will be expressed
in a high-level pseudocode. Initial activation levels will always be zero.

We will consider two new resources, called the height and width of a representation, which
give some indication of the relationships between the weights and the thresholds, and between the
thresholds themselves (respectively), to be defined later.

3 A k-ary Perceptron Learning Rule

The perceptron learning problem is the problem of learning binary weighted linear threshold func-
tions on a binary neural network consisting of a single processor (called a perceptron for historical
reasons). There is a well-known algorithm for the perceptron learning problem which uses the
so-called perceptron learning rule to derive successive weights. The algorithm is described in Figure
1.

Theorem 3.1 (The Perceptron Convergence Theorem) The perceptron learning algorithm for learn-
ing n-input binary weighted linear threshold functions on a single n-input perceptron described in
Figure 1 terminates.

Proof: See, for example, Duda and Hart [1], Minsky and Papert [4], Nilsson [6] or Novikoff [7]. O

The initial weights can be set to any value in the for-loop on line 1 in Figure 1. The members
of Z3 can be used in any order in the for-loop on line 3, provided every member is used an infinite
number of times in the algorithm. Also, the value added to w; in the for-loop of perceptron_update
procedure can be multiplied by some constant ¢; € R™ at the 4% call of that procedure provided
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procedure perceptron(n)
fori:=1tondo w;:=0;
repeat
for each x = (x1,...,%,) € Z5 do p := O3(wy,...,wp,0)(x);
if f(x) # p then perceptron_update(x, p);
Output (wq,...,wy)
until f(x) = ©5(wy,...,wy,0)(x) for all x € Z}.

procedure perceptron_update(x, p)
if f(x) > p then sign:=1
else sign := —1;
for i :=1 to n do w; := w; + sign * x;;

Figure 1: The Perceptron Learning Algorithm.
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m
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Furthermore, the algorithm will learn any weighted linear threshold function whose domain is some
finite subset of R™. We will make use of this fact later. The latency of the algorithm is clearly
linear in n. The worst-case mistake bound appears no better than exponential in n.

The k-ary perceptron learning problem is the problem of learning k-ary weighted multilinear
threshold functions. The minimal architecture for learning m-input k-ary weighted multilinear
threshold functions is a single k-ary weighted multilinear threshold gate with n inputs, which we
will call a k-ary perceptron. A k-ary perceptron which computes n-input k-ary weighted multilinear
threshold function O} (wy,...,wp,t1,...,tk—1) will be depicted as in Figure 2. It was shown in
Obradovic and Parberry [8] that there is no canonical set of threshold values for a k-ary perceptron
when k£ > 3. This suggests that the thresholds #;,...,fx_; must be learned in addition to the
weights wy, ..., wy,.

Even if the threshold values are known in advance, many obvious extensions to the perceptron
learning rule for the k-ary perceptron learning problem (such as that shown in Figure 3) which
modify only the weights do not necessary terminate for all choices of ordering of sample inputs
in line 4. For example, suppose k& = 3 and n = 2 (similar examples can be found for arbitrary
n and k using the same principles). Consider f = ©3(4,3,7,8). Suppose we use the algorithm
described in Figure 3 on a 2-input 3-ary perceptron with thresholds ¢; = 7 and ¢, = 8 to find
weights wq,wo such that ©3(wy,ws,7,8) = f. After considering points (2,0) and (2,2), we have
weights (wq,w9) = (4,2). All points are correctly classified using these weights except for the point
(1,1). Thus there is no change to the weights until point (1,1) is considered, at which time the new
weights become (5,3). Once again, all points are correctly classified using these weights except for



Figure 2: An Arbitrary n-input k-ary Perceptron

procedure thresholdperceptron(n,k, t1,...,tx 1)
for i:=1 to n do w; := 0;
repeat

for each x € Z}! do p := O} (wi,...,wn,t1,...,tk_1)(x)
if f(x) # p then thresholdperceptron_update(x, p);
Output (wq,...,wp)
until f(x) = O} (wy,...,wy,t1,...,tk—1)(x) forall x € Z}.

procedure thresholdperceptron_update(x, p)
if f(x) > p then sign:=1
else sign := —1;
for i:=1 to n do w; := wj + sign * x;;

Figure 3: A Trial k-ary Perceptron Learning Algorithm for Known Thresholds.




the point (1,1). Thus there is no change to the weights until point (1,1) is reconsidered, at which
time the new weights are again (4, 2). Thus the weights cycle between (4,2) and (5, 3) without ever
reaching an acceptable solution. Matters are not improved by making obvious changes to Figure
3, for example, instead of adding a multiple of z; in the for loop of thresholdperceptron_update
procedure, substituting one if z; > 0 and zero otherwise.

However, matters can be improved by learning both the thresholds and the weights. It can be
shown from first principles that the k-ary perceptron learning algorithm for learning n-input k-ary
weighted multilinear threshold functions on a single n-input k-ary perceptron described in Figure
4 terminates. Termination can more easily be proved as a corollary of the Perceptron Convergence
Theorem as follows.

Definition. If f is an n-input k-ary weighted multilinear threshold function, the orthogonal slice
function for f is a binary weighted linear threshold function g such that for all z € Z} and all
1 € Ly,

f(z) 2 i e g(z,y(@) =1,

where y : {1,...,k — 1} = {0,1}* 7" is defined by

Lemma 3.2 f=0}(wi,...,wp,t1,...,t5_1) iff @g"”c_l(wl, e Why —t1, .oy —tp_1,0) is the
orthogonal slice function for f.

Proof: Follows immediately from the definition of the orthogonal slice function O

Theorem 3.3 (The k-ary Perceptron Convergence Theorem) The k-ary perceptron learning algo-
rithm for learning n-input k-ary weighted multilinear threshold functions on a single n-input k-ary
perceptron described in Figure 4 terminates.

Proof: (Sketch) The learning algorithm, instead of learning f, learns the orthogonal slice function
for f using the binary perceptron learning algorithm shown in Figure 1. The orthogonal slice
function for f is guaranteed to exist by (the “only-if” part of) Lemma 3.2. Once the orthogonal
slice function has been learned, f can be reconstructed using (the “if” part of) Lemma 3.2. The
algorithm is guaranteed to terminate by the Perceptron Convergence Theorem. It is clear that the
algorithm realizes Figure 4. O

The latency of the k-ary perceptron learning algorithm is O(n), and the mistake bound is no
worse than for the binary perceptron learning algorithm on n + k inputs.

A second candidate architecture for learning k-ary weighted multilinear threshold functions
consists of [logk] binary perceptrons, the i‘® of which learns the i** bit of the output value,
together with a single k-ary weighted multilinear threshold gates with exponentially increasing
weights which converts the binary output of these gates into the corresponding member of Zj.
Unfortunately this cannot work because the last binary perceptron is expected to learn the least
significant bit of the k-ary output, which is not necessarily a binary weighted threshold function.

A third candidate architecture for learning k-ary weighted multilinear threshold functions con-
sists of a depth 2 circuit of size k. The first layer consists of k—1 binary perceptrons, each connected



procedure multiperceptron(n, k)
fori:=1 to n do w; := 0;
fori:=1tok—1dot;:=0;
repeat

for each x = (x1,...,%y) € Z} do p:=Op(wy,..., Wy, t1,...

if f(x) # p then multiperceptron_update(x, p);
Output (Wi, ..., Wpn,t1,...,tk_1)
until f(x) = O} (wi,...,wn,t1,...,tx_1)(x) for all x € Z.

procedure multiperceptron_update(x, p)
if f(x) > p
then t ;1 =t —1; sign:=1
else t, :=t, +1; sign := —1;
for i :=1 to n do w; := w; + sign * x;;

s tk—1) (%);

Figure 4: The k-ary Perceptron Learning Algorithm.

procedure netperceptron(n, k)
for i:=1tok—1do
for j:=1to n do w;; :=0;

repeat
for each x = (x1,...,x,) € Z} do
for each i € Zy do neuron_update(x, i)
Output (Wi1,...,Wk—1,n)

until ((x) > 1) € (05 (i, .., win, 0)(x) = 1)
forallx€Zy and 1 <i<k-1.

procedure neuron_update(x, i)
p:= eg(wi,la <oy Win, 0)(X)7
if (f(x) > 1) and (p = 0) then sign :=1
else if (f(x) < i) and (p=1) then sign:= —1
else sign := 0;
for j:=1 to n do w;; := w;j + sign * x;;

Figure 5: The k-ary Perceptron Learning Algorithm for a Depth 2 Circuit.




to all of the inputs. The second layer consists of a single k-ary perceptron, connected to all of the
gates in the first layer. The thresholds of the first layer are all zero. The thresholds of the k-ary
perceptron are 1,2, ...,k — 1. The weights of the connections from the first layer to the second are
all one. The weights of the connections from the inputs to the first layer will be learned.

Let w; ; denote weight from the 4" input to the i gate on the first layer, where 1 <i <k —1
and 1 < j < m. Suppose we are to learn a k-ary weighted multilinear threshold function f. The
first level essentially computes the orthogonal slice function for f, and the second level converts
this to a value from Zj. More precisely, the i*" gate on the first level, 1 < i < k — 1, will output
one on input z iff f(x) > 4. This implies that exactly f(z) of the gates in the first layer will be
active. The output gate sums the number of active gates in the first layer.

It is clear that by performing the binary perceptron learning rule in parallel for all £ — 1 gates
in the first layer, the network will learn arbitrary k-ary weighted multilinear threshold functions.
The learning algorithm is described in Figure 5. It has a latency of O(nk). Its mistake bound may
be better than that of Figure 4 in practice since it learns arbitrary separating hyperplanes, rather
than parallel ones. However, the worst case mistake bound remains apparently exponential.

4 A k-ary Winnow Algorithm

A representation (wq,...,wn,t1,...,tx_1) € R"* 71 of a k-ary weighted multilinear threshold
function is positive iff w; > 0 for all 1 <4 < n. A k-ary weighted multilinear threshold function is
positive iff it has a positive representation.

A positive representation (wq, ..., wy,t1,...,tk_1) has separation X € RT, 0 < X\ < 1, if for all
z=(x1,...,2) €EZ},and all i € Zy, i < k — 1,

n
f(x) <1 iff ijxj < (1 - A)ti—l—l-
Jj=1

The width of a representation (wi,...,wp,t1,...,t,_1) is the ratio tx_1/t1. Note that all rep-
resentations of a binary weighted linear threshold function have width one. A k-ary weighted
multilinear threshold function has width (at most) d iff it has a representation of width d.

The height of a representation (wq,...,wy,t1,...,tx—1) of width d is the ratio

n

|w;| 1
> +1- -

im1 e

A k-ary weighted multilinear threshold function has height (at most) A iff it has a representation
of height h. A k-ary weighted multilinear threshold function is (A, h, d)-separable if it has a positive
representation of separation A > 0, height A, and width d. Since all binary weighted linear threshold
functions have width 1, we will write (A, h)-separable when k = 2.

When learning weighted linear threshold functions, we can without loss of generality restrict
ourselves to learning positive ones. If we need to learn a weighted linear threshold function with
negative weights, we can substitute a positive function of the same height, and perform a minimal
amount of pre-processing of the inputs:

Lemma 4.1 For each representation (v1,...,vn,t) of height h there exists a positive representation
(wi,...,wp,r) of height h and a function g : Z% — Z%5 of the form g(x1,...,2n) = (Y1,---,Yn)
where for 1 <i <mn, , either y; = x; or y; = T;, such that for all z € Z%,

f(z) = 03(wi,...,wn,7)(9(2)).



procedure winnow(n, «)

fori:=1 tondo w;j:=1;
repeat
for each x = (x1,...,%n) € Z3 do p:= O3(wy,...,wp,n)(x);

if f(x) # p then winnow_update(x, p, a);
Output (wq,...,wy,n)
until f(x) = O5(wy,...,wn,t)(x) for all x € Z}.

procedure winnow_update(x, p, @)
if f(x) > p then 0 := «
else 6 :=1/a;
for i:=1 to n do w; := w; §%i;

Figure 6: The Winnow Learning Algorithm.

Proof: We make use of an elementary technique due to Muroga [5] (see also Theorem 4.5.2 of
Parberry [10]). Suppose f(z) = ©5(vy,...,v,,t). Then

wi=|wv; | for 1 <i<n,
and

n
r=t+y (lvi|—v)/2,
i=1

and
y; = 0.5+ (:El — 0.5)Ui/| V; |

The new representation has height at most h since its denominator is larger than that of the original
representation, whilst its numerator is the same. O

The threshold value in a positive representation is not important.

Lemma 4.2 For each positive representation (vy, ..., vy, t) of height h and separation \ with t > 0,
and all r € R, there is a positive representation (w1, ...,wy,r) of height h and separation X\ such
that

OF (v1,...,0p,t) = OF (W, ..., Wy, T).

Proof: Set w; = v;r/t for 1 <i<n. O

Littlestone [2,3] proposed a learning algorithm, called the winnow algorithm (see Figure 6) for
learning n-input binary, positive, (X, h)-separable functions on a single n-input perceptron. The
algorithm takes as parameter a constant «, and learns a positive representation with threshold



value n (such a representation exists, by Lemma 4.2). The latency of the binary winnow algorithm
is clearly linear in n. The mistake bound is given by the following theorem.

Theorem 4.3 If « = 0.5\ + 1, then the number of mistakes made by the winnow algorithm in
Figure 6 learning an n-input, positive, (A, h)-separable weighted linear threshold function on a
single n-input perceptron is at most

l4logn 5 8

Proof: See Littlestone [2]. O

Later we will use the fact (Littlestone [3]) that the winnow algorithm will learn any n-input,
positive, (A, h)-separable weighted linear threshold function whose domain is some finite subset of
{{0}U[4,1]}". In that case, the mistake bound from Theorem 4.1 depends on log(n/d) instead of
logn.

The mistake bound is a significant improvement over the binary perceptron learning algorithm
for weighted linear threshold functions with large separation and small height. In contrast, the best
known mistake upper bound for the perceptron learning algorithm (see, for example, Duda and
Hart [1]) is polynomial in the weight of the best representation (if it is sufficiently large). It is known
(see, for example, Muroga [5]; Parberry [10]) that there are weighted linear threshold functions for
which the weight of the best representation is at least exponential in n, and it can be deduced that
there are functions with exponential weight, polynomial height and inverse-polynomial separation.
Whilst the perceptron learning algorithm appears to make exponentially many mistakes for these
functions, the winnow learning algorithm makes only polynomially many mistakes. If A and h are
constant, only O(logn) mistakes are made.

In the light of Lemma 4.1, the definition of (), h)-separability can be extended to non-positive
weighted linear threshold functions as follows. A representation (wq,...,wy,,t) has separation
AeRT, 0< A<, ifforall z = (z1,...,2,) € Z5,

f(r) <0 iff Z|w3|:1:3 (I—=A Z|w3|—wj/2)
Jj=1 Jj=1

Hence we have:

Corollary 4.4 Any n-input (X, h)-separable weighted linear threshold function can be learned on a
neural circuit of depth 2 and size at most n with latency O(n) and mistake bound

14logn 5 8
(1tlogn 3, &

Proof: The result is an immediate consequence of Lemma 4.1 and Theorem 4.3. O

We extended the winnow algorithm to k-ary weighted multilinear threshold functions. The
k-ary winnow algorithm for learning n input, k-ary, positive, (A, h,d) separable function on a single
k-ary perceptron with n inputs is described in Figure 7.

The latency of the algorithm is O(n + k). To prove the mistake bound we will use a new slice
function which preserves positiveness.
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procedure multiwinnow_learning(n, k, c)

fori:=1ton+k—2do w;:=1;

b1 = (k= 1)(n+k — 2);

for i:=k —2 downto 1 do t; =t;y; — 1;

repeat

for each x = (x1,...,%xn) € Z} do p:=Op(wy,..., Wy, t1,t2,...,tk—1)(X);

if f(x) # p then multiwinnow_update(x, p, o'/<=1);
Olltpllt <W1, ey Wp, tl, tz, e ,tk,1>.

until f(x) = O} (wy,...,wn,t1,...,tk_1)(x) forall x € Z}

procedure multiwinnow_update(x, p, @)
for i:=1 to n do z; := x;;
fori:=1tok—2do z,4i:=0;
if f(x) > p then § :=a; ind:=p+1
else 0 := 1/a; ind := p;
for i:=ind to k — 2 do z,; := 1;
fori:=1ton+k—2do w;:= w;é4;
for i:=k — 2 downto 1 do t; = tiy1 — wpi;

Figure 7: The k-ary Winnow Learning Algorithm.

Definition. If f is an n-input k-ary weighted multilinear threshold function, the unary slice
function for f is a binary weighted linear threshold function g such that for all z € Z7 and all
1 € 2y,

fla) 2 i glz,y() =1,

where y : {1,...,k — 1} — {0, l}kf1 is defined by
y(i) = (y1,. -, yk—2) With y; = Liff j > .
Lemma 4.5 If (vi,...,vp,t1,...,tk—1) is a positive representation of height h, width d, and separa-

tion X of a k-ary weighted multilinear threshold function f, then (wy, ..., wp,ta—t1,t3—to, ... tp_1—
tk—2,tp—1) is a positive representation of height h and separation \/d of the unary slice function

for f.

Proof: Follows immediately from the definition of the unary slice function. O

Theorem 4.6 If « = 1+X/(2d), then the number of mistakes made by the k-ary winnow algorithm
in Figure 7 learning an n-input, positive, (X, h,d)-separable k-ary weighted multilinear threshold

11



function on a single n-input k-ary perceptron is bounded above by

(14012 log((k = 1)(n+k=2)) 5_d> k1) 8d?

A2 A

Proof: (Sketch) By Lemma 4.5 the learning algorithm, instead of learning a positive representation
(wi,...,wp,t1,te,,...,tk—1) of height h and separation A for a k-ary weighted multilinear threshold
function f , can learn a positive representation (wq,...,wy,to — t1,t3 — to,, ..., tk_1 — tk_o2,tk 1)
of height A and separation \* = \/d of the unary slice function for f. Since inputs (z1,...,z,) for
function f are from Z}}, we cannot apply the binary winnow learning algorithm directly to learn
the unary slice function for f on inputs (z,y(i)) = (%1,...,Zn,Y1,---, Yk_1). But, we can use the
binary winnow learning algorithm with learning parameter o and threshold ¢ = n+k— 2 to learn a
modified unary slice function (wy, ..., wy,ta—t1,t3—t2,,...,tg—1—tg_2,tx—1/(k—1)) on compressed
inputs (z1/(k—=1),...,zn/(k=1),11/(k—1),...,yk—2/(k—1)) from {{0} U [1/(k — 1),1]}". Finally,
observe that

azi/kfl,wi _ (al/(kfl))ziwi

and also
T;

n k—2
Yi
S S i < (k-2
iZIwzk_1+i:1wn+Zk_1 (n + )

iff

n k—2

> wizi+ Y wngiys < (k—1)(n+k —2).

i=1 i=1
So, for learning we can actually use binary winnow algorithm with learning parameter al/=1) and
threshold t = (k — 1)(n + k — 2) on the original inputs (z1,...,Zn, y1,...,Yk—1). 1t is easy to see

that this algorithm realizes Figure 7. Substituting a =1+ X*/2, t=n+k—2and 6 =1/(k — 1)
in the Theorem 4.3 we obtain the mistake bound from the claim of this theorem. O

The mistake bound of the k-ary winnow algorithm is a significant improvement over the k-ary
perceptron learning algorithm for (A, h, d)-separable functions when \ is large and h and d are
small.

A slightly better mistake bound can be obtained if the input z € Z} is encoded in binary
as z* € Z3'°%" and the k-ary winnow algorithm is used on a k-ary perceptron with nlogk binary
inputs instead of n k-ary inputs. Instead of learning k-ary weighted multilinear threshold functions,
we can substitute binary-to-k-ary weighted multilinear threshold functions, which are simply k-ary
weighted multilinear threshold functions whose domain is restricted to Z#, and perform a small
amount of pre-processing of the inputs. Without loss of generality, we will henceforth assume that
k is a power of two. Define function Encode : Zj — Z’;“)g’“, which simply encodes a k-ary input in

binary, by Encode(x) = (y1,--.,Ynlogk) Where = (21,...,2,) € Z} and

log k

i—1
zi= Y 27y 1) logk-
=1

Lemma 4.7 For every n-input, positive, k-ary weighted multilinear threshold function f of height
h and depth d there exists an (nlog k)-input binary-to-k-ary weighted multilinear threshold function
g of height (k — 1)h and width d such that for all x € Z}, f(z) = g(Encode(z)).
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Proof: If f = OF (wy,...,wy, t1,...,tx_1), then g is the function O} (w1,1,..., Wy logk, t1,---, tk—1)

nlogk
Z2

with domain restricted to , where w; ; = 2L, for 1 <4 < n,1 < j<logk. O

Lemma 4.8 If (wy,..., W,k _2,t) is the representation of the unary slice function of a binary-to-
k-ary weighted multilinear threshold function f, then (wy,...,wp,t1,,...,tk—1) is a representation
of f, where
n+k—2
ti=t— > wj
j=n+i

Proof: Follows immediately from the definition of the unary slice function. O

Theorem 4.9 Any n-input, positive, (A, h, d)-separable binary-to-k-ary weighted multilinear thresh-
old function can be learned on a k-ary perceptron with latency O(n + k) and mistake bound

14d?log (n+k—2) 5d 8d?

A2 DY
Proof: (Sketch) The domain of binary-to-k-ary weighted multilinear threshold function is restricted
to Z5. So, the learning algorithm, instead of learning f, can learn the unary slice function for f
using the binary winnow learning algorithm. The threshold is chosen equal to n + k& — 2 by Lemma
4.2. The unary slice function for f is guaranteed to exist by Lemma 4.5. Once the unary slice

function has been learned, f can be reconstructed using Lemma 4.8. The mistake bound is given
by Theorem 4.3. O

Theorem 4.10 Any n-input, positive, (X, h,d)-separable k-ary weighted multilinear threshold func-
tion can be learned on a k-ary neural circuit of depth 4 and size O(nk) with latency O(nlogk + k)
and mistake bound

14d? 1 logk+k—2) 5d 8d?
( osnlogh ¢ >+7>(k_1>h+7.

Proof: (Sketch) For k-ary input (21, ..., 2,) function Encode(x1,...,%n) = (Y1, .- Ynlogk) can be
computed using the subcircuit of depth 3 and size O(nk). Then the k-ary winnow algorithm from
Theorem 4.9 can be used to learn (nlog k)-input binary-to-k-ary weighted multilinear threshold
function on a single (n log k)-input k-ary perceptron. See Figure 8 for detailed construction of the
circuit. The i*" block (1 <14 <mn)in layers 1 — 2 of the circuit determines whether the ith digit x;
of the input is equal to 0,1,...,0or k — 1. The test whether the digit x; is equal to j (1 < j <n) is
easy to realise using 3 gates in 2 layers because (z; = j) iff (x; > j & —xz; > —j). The weights of
the connections from the second to the third layer are all equal to one. A circle with symbol "V’
inside in the third layer denotes an OR gate (which is an n-input threshold gate with weights 1,
first threshold equal to 1 and all other thresholds equal to n + 1). The i block of logk OR gates
in the third layer (1 <4 < n) outputs the binary encoding Y14 (i—1)i0gk> - - - Yilogk Of the digit z;.
The weights w1, ..., w, 10k Of the connections from the third layer to the k-ary gate in the fourth
layer, and the thresholds t1,...,t,_1 of the output gate in the fourth layer can be learned using
Theorem 4.9. Since the output k-ary gate has nlogk inputs, latency is O(nlogk + k). The mistake
bound easily follows from Lemma 4.7 and Theorem 4.9. O
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The definition of (A, h,d)-separability can be extended to non-positive weighted multilinear
threshold functions as follows. A k-ary weighted multilinear threshold function f : Z}! — Zj is

, h,d)-separable iff its binary encoded equivalent : — 2y 1s (N, (k — ,d)-separable,
A by d ble iff its bi ded equivalent f* : ZI'°6% 5 7, is (A, (k — 1)h,d bl

where separation is A € RT, 0 < A < 1, if for all z € Z5'** and all i € Zy, i < k — 1,

nlogk nlogk

P <i Y Juley < (0= N+ Y (wil —w;)/2)).
Then we have the extension of the result to the non-positive case:

Corollary 4.11 Any n-input (X, h,d)-separable k-ary weighted multilinear threshold function can
be learned on a k-ary neural circuit of depth 4 and size O(nk) with latency O(nlogk + k) and
mistake bound

14d?log(nlogk +k —2) 5d 8d?
( 2 + (k—l)h+7.

Proof: (Sketch) Suppose f is a (A, h,d)-separable k-ary weighted multilinear threshold function.
Then it has an (nlog k)-input (A, (k—1)h, d)-separable binary-to-k-ary weighted multilinear thresh-
old function f; by Lemma 4.7. By Lemma 4.5, f; has an (nlogk + k — 2)-input (A/d, (k — 1)h)-
separable unary slice function fo, which can be replaced by an (nlogk + k — 2)-input positive
(M/d, (k — 1)h)-separable unary slice function f3 by Lemma 4.1. A depth 3, size O(nk) k-ary
threshold circuit can compute function Encode as in Theorem 4.10. The winnow algorithm is used
to learn a representation for f;3. By Theorem 4.3, the latency is O(nlogk + k) and the mistake
bound is

14d? 1 logk+k—2) 5d 8d?
( osnlogh ¢ >+7>(k_1>h+7.

A careful analysis gives the required mistake bound. O

The k-ary winnow algorithm can also be used to learn k-ary weighted multilinear threshold
functions on a network of size k and depth 2 by using essentially the same techniques as were used
for the perceptron learning algorithm in Section 3. The details are left for the interested reader.

5 Conclusion

The study of k-ary neural networks was justified by the observation that they are closely related
to analog neural networks of bounded precision. We have seen two learning results for k-ary neural
networks. Firstly, we have demonstrated a k-ary perceptron learning rule with guaranteed con-
vergence. Secondly, Littlestone’s winnow algorithm, which learns binary weighted linear threshold
functions with a mistake bound dependent on their height has been extended to a k-ary winnow
algorithm whose mistake bound depends on the height and width of the k-ary weighted multilinear
threshold function being learned.
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