
766 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5, MAY 1989

A Note on Nondeterminism in Small, Fast Parallel Computers

IAN PARBERRY
Abstract-Nondeterministic analogues of the well-known classes NC

and SC, d d NNC and NSC, respectively, are investigated. Adding
nondeterminism to SC leaves it in the domain of parallel computation
since NSC E POLYLOGSPACE. That is, NSC is a subset of the class of
languages computable by fast parallel computers. Adding noodeter-
minism to NC appears to make it much more powerful since NNC = NP.
It is clear that NSCE NNC, and probable that NSC C NNC. We provide
further evidence for this conjeeture by showing that NSC is precisely the
class of languages recognizable in simultaneous polynomial time and
polylog reversals by a nondeterministic Turing machine with a read-only
input tape and a single read-write work-tape. It is known that NNC is
precisely the class of languages recognizable in simultaneous polynomial
time and polylog reversals by a nondeterministic Turing machine with a
read-only input tape and two read-write work-tapes.

Index Terns-Crossing sequence, NC, nondeterminism, parallel com-
putation thesis, parallel computers, reversal, SC, simultaneous resource
bounds, space, time.

I. INTRODUCTION
The complexity classes NC and SC have been well studied in the

recent literature. NC is the class of languages which can be accepted
by small, fast parallel computers. NC remains the same class under
many definitions of a “parallel computer” (see, for example,
Dymond [41, Dymond and Cook 151, and Ruzzo [20]). Pippenger [191
has demonstrated that NC is the class of languages which can be
recognized by a deterministic Turing machine in polynomial time and
polylog reversals (a reversal is said to occur when any tape head
changes direction). SC is the class of languages which can be
recognized by a deterministic Turing machine in polynomial time and
polylog work-space (that is, not counting the space needed for the
storage of the inputs). It is widely conjectured that SC # NC. More
strongly, it is expected that NC !Z SC and SC !Z NC (see, for
example, Cook [3]).

We will consider the impact of nondeterminism on small, fast
parallel computers. The effect of nondeterminism on sequential
computers is well studied in the form of the P # NP problem [2],
[13]. P is the class of languages recognized by fast sequential
computers. P remains the same class under many definitions of
“computer.” NP is the nondeterministic analogue of P. While the P
NP question is still open, a large amount of evidence in favor of
the conjecture has been accumulated. There exist a large number of
problems which have been shown to be NP-complete; that is, they
are members of NP and have the property that if any one of them are
members of P, then P = NP. Garey and Johnson [6] have gathered a
large list of NP-complete problems.

Nondeterministic analogues of the classes NC and SC, called NNC
and NSC, respectively, can be defined in a natural manner using a
standard nondeterministic Turing machine model with k one-way
infinite work-tapes and a single read-only input tape (after the manner
of Aho, Hopcroft, and Ullman [l]). A nondeterministic Turing
machine runs in time T(n) and space S (n) if for all accepted inputs of
size n there is an accepting computation which uses time at most T(n)
and space at most S (n) . A nondeterministic Turing machine runs in
time T(n) and reversals R (n) if for all accepted inputs of size n there
is an accepting computation which uses time at most T(n) and
reversals at most R (n) . The reversals and space are measured on the
work-tapes only. We assume that the running time T(n) = Q(n) and
the space bound S (n) = n(log n). For definiteness, we define NC to
be the class of languages recognizable in polynomial time and polylog
reversals on a k-tape deterministic Turing machine, NNC to be the
class of languages recognizable in polynomial time and polylog

Manuscript received September 10, 1986; revised October 29, 1987.
The author is with the Department of Computer Science, The Pennsylvania

IEEE Log Number 8825691.
State University, University Park, PA 16802.

reversals on a k-tape nondeterministic Turing machine, SC to be the
class of languages recognizable in polynomial time and polylog space
on a k-tape deterministic Turing machine, NSC to be the class of
languages recognizable in polynomial time and polylog space on a k-
tape nondeterministic Turing machine.

The proof of Pippenger that NC is exactly the class of languages
recognizable in polynomial size and polylog depth by uniform circuits
[19] extends easily to our Turing machine model. The simulation of a
uniform circuit by a Turing machine is straightforward since our
Turing machine is a more general form of that used by Pippenger in
that we do not count reversals on the input tape. Pippenger does not
count the number of tapes required; two work-tapes are sufficient.
Dymond [4] notes that three tapes are sufficient, but he does not
distinguish between the input tape and the work-tapes. The simulation
of our Turing machine by a uniform circuit appears in Parberry [151,
[161. An improved simulation with tighter resource bounds appears in
Parberry [17], [18]. Suppose we define a nondeterministic uniform
circuit to be a uniform circuit augmented with a polynomial number
of auxiliary inputs. Such a circuit accepts its input if there is an
assignment to the auxiliary inputs that results in the output having
value 1. It is easy to show that NNC is exactly the class of languages
recognizable in polynomial size, polylog depth, by a nondeterministic
uniform circuit family.

Let POLYLOGSPACE denote the class of languages recognizable
in polylog space on a Turing machine. By Savitch’s theorem [2 11, the
Turing machine may be either deterministic or nondeterministic.
POLYLOGSPACE is widely accepted to be the class of languages
recognizable by fast parallel computers. Goldschlager [7], [9] has
called this characterization the parallel computation thesis. NC is
widely accepted to be the class of languages recognizable by small,
fast parallel computers. Dymond [4], [5] has called this characteriza-
tion the extendedparallel computation thesis. By Savitch’s theorem
1211, NSC C POLYLOGSPACE; that is, languages in NSC can be
recognized by fast parallel computers.

II. THE RESULTS
Although it is popularly conjectured that SC !Z NC, the opposite is

true for the corresponding nondeterministic complexity classes. To
see that NSC E NNC, note that NSC E NP and:

Theorem I : NNC = NP.
Proof: Clearly NNC E NP. To see that NP C NNC, first

observe that every language in P has a polynomial-size uniform
circuit. This fact was first noted by Ladner [14]. (A more detailed
proof appears in Parberry [18].) We will first demonstrate that P C
NNC. Suppose L E P. From the above observation, there exists a
polynomial-size uniform circuit CL which recognizes L. A polyno-
mial-size, logarithmic-depth nondeterministic uniform circuit for L
can be constructed as follows. The nondeterministic circuit guesses a
value for every wire in CL and verifies that the guessed values are
consistent and that the output is 1 . The verification can be carried out
by using a single layer of gates which corresponds exactly to the gates
in C,, and a tree of AND gates of depth O(1og n). This shows that P
E NNC. A similar argument shows that NP E NNC. If L E NP,
then L can be recognized in polynomial time by a deterministic
Turing machine augmented with a “random” tape provided we
define acceptance of the input to mean that there exists a sequence of
symbols which, when written on the random tape, causes the machine
to deterministically enter the accept state on the given input. This is
essentially the “guess-verify” Turing machine model of Garey and
Johnson [6] . A polynomial-size nondeterministic uniform circuit can
be constructed from this Turing machine by applying the technique of
Ladner to the deterministic portion of the computation. This can be
simulated by a polynomial-size, logarithmic-depth nondeterministic
uniform circuit as before. 0

In light of Theorem 1 , it appears extremely likely that adding
nondeterminism to small, fast parallel computers increases their
power. Since NC C P, if NNC = NC then NP = P = NC. It is

OO18-9340/89/05OO-0766$01 .OO 0 1989 IEEE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 5 , MAY 1989 767

widely conjectured that P # NP (that is, there are problems which
are feasible to check on a sequential computer, but not feasible to
solve), and that P # NC (that is, there are problems which can be
feasibly solved on a sequential computer, but which cannot be solved
on a small, fast parallel computer). As mentioned above, evidence is
provided for the former conjecture by a large number of NP-complete
problems. In a similar manner, evidence is provided for the latter
conjecture by a large number of P-complete problems (see, for
example, [8], [101, [1 11, and [141). If any P-complete problem can be
demonstrated to be a member of NC, then P E NC.

NSC and NNC superficially appear different since NSC remains
the same even if only a single work-tape is allowed (by Theorem 7.2
of [121) while in contrast it appears that two work-tapes are necessary
to capture all of NNC. Certainly two tapes are sufficient, by use of
the “reduction to sorting” technique of Pippenger [19]. We will
show that NSC is precisely the class of languages recognizable in
simultaneous polynomial time and polylog reversals by a nondeter-
ministic Turing machine with a read-only input tape and a single
read-write work-tape. We will call the latter class NNC,.

Theorem 2: A nondeterministic single work-tape Turing machine
which runs in time T(n) and space S (n) can be simulated by a
nondeterministic single work-tape Turing machine in time
O(T(n).S(n)2 and reversals O(S(n)).

Proof: (Sketch) The simulation takes place in four phases.

In a single sweep, nondeterministically guess a sequence of
configurations and a sequence of rules, interleaved so that each
rule precedes the configuration to which it is to be applied. In the
process, nondeterministically mark each cell in the configuration
as either occupied or unoccupied by the tape head.
Verify in a single sweep that the work-tape head is marked as
occupying exactly one tape cell in each configuration, and that the
final configuration has the accept state.
Verify in a constant number of sweeps that the sequence of rules is
consistent with the input, the guessed sequence of states, and the
symbols under the head in each configuration.
Verify that the head movements are consistent with the guessed
rules. Initially all cells are unmarked. On the ith sweep, 1 5 i 5
S (n) , do the following. When entering a configuration:
a) Remember what rule is to be applied to get to the next

configuration.
b) Find the ith cell in the configuration (it will be the first

unmarked cell). Remember whether the head was in the (i -
1)st cell when passing over it.
If the head was on the ith cell of the previous configuration,
then do the following, else do nothing. If the head movement
implied by the previous rule was “move left” and the (i -
1)th cell was not scanned by the tape head, then fail.
Otherwise, if there was no head movement, verify that the ith
cell is scanned by the head. Otherwise, if the head movement
was “move right,” remember to check the (i + 1)th tape cell
when leaving the configuration in step d) below. Check that
the symbol in cell i is consistent with the current rule.
Mark the ith cell as visited, and move to the next configura-
tion.

c)

d)

The running time is dominated by Phase 4 which requires S (n)
sweeps, each taking time O(T(n) .S (n)) and constant reversals. 0

Corollary 3: NSC E NNC,.
Theorem 4: A nondeterministic single work-tape Turing machine

which runs in time T(n) and reversals R (n) can be simulated by a
nondeterministic Turing machine in time O(T(n)*log T(n)) and

Proof. (Outline) The Turing machine guesses a sequence of
crossing sequences, verifying after each guess that the new crossing
sequence matches its predecessor. The latter can be tested using an
algorithm similar to that in Section 2.6 of Hopcroft and Ullman [12].
Our crossing sequences must contain, along with the sequence of
states in which cell boundaries were crossed, a time stamp and a
positive integer which indicates in the position of the input head.

space O(R(n)*log T(n)). 0

Thus, each crossing sequence must have length O(R(n)*log T(n)),
which gives a space bound of O(R(n)-log T(n)). The running time is
linear in the total length of the series of crossing sequences, that is,

0 O(T(n) log T(n)) .
Corollary 5: NNC, C NSC.

JII. CONCLUSION
While it is clear that NSC C_ NNC, it is unlikely that the two

classes are equal. We have provided further evidence that this is the
case by showing that NSC is precisely NNC restricted to one work-
tape; two work-tapes are sufficient and appear necessary to capture
all of NNC. Nondeterministic analogues of standard parallel com-
plexity classes are intrinsically interesting. For example, NSC is a
subset of the class of languages recognized by fast parallel computers,
while NNC is exactly NP. It appears that adding nondeterminism to
small, fast parallel computers increases their power.

REFERENCES

[l] A. V. Aho, J . E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-Wes-
ley, 1974.
S. A. Cook, “The complexity of theorem proving procedures,” in
Proc. 3rd ACM Symp. Theory Cornput., 1971, pp. 151-158.

[2]

-, “Towards a complexity theory of synchronous parallel computa-
tion,” L’Enseignement Mathematique, vol. 30, 1980.
P. W. Dymond, “Simultaneous resource bounds and parallel computa-
tions,’’ Ph.D. dissertation, Tech. Rep. TR145/80, Dep. Comput. Sci.,
Univ. of Toronto, Aug. 1980.
P. W. Dymond and S. A. Cook, “Hardware complexity and parallel
computation,” in Proc. 21st Annu. IEEE Symp. Foundations
Comput. Sci., Oct. 1980, pp. 360-372.
M. R. Carey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA:
Freeman, 1979.
L. M. Goldschlager, “Synchronous parallel computation,’’ Ph.D.
dissertation, Tech. Rep. TR-114, Dep. Comput. Science, Univ. of
Toronto, Dec. 1977.
-, “eproductions in context-free grammars,” Acta Informatica,
vol. 16, no. 3, pp. 303-308, 1981.
-, “A universal interconnection pattern for parallel computers,” J .
ACM, vol. 29, pp. 1073-1086, Oct. 1982.
L. M. Goldschlager and I. Parberry, “On the construction of parallel
computers from various bases of Boolean functions,” Theor. Comput.
Sci., vol. 43, pp. 43-48, May 1986.
L. M. Goldschlager, R. A. Shaw, and J. Staples, “The maximum flow
problem is log space complete for P,” Theor. Comput. Sei., vol. 21,
no. 1 , pp. 105-111, 1982.
J . E. Hopcroft and J . D. Ullman, Introduction to Automata Theory,
Languages and Computotion. Reading, MA: Addison-Wesley ,
1979.
R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, J . W. Thatcher, Ed. New
York: Plenum, 1972.
R. E. Ladner, “The circuit value problem is log space complete for
P,” SIGACTNews, vol. 7, no. 1 , pp. 18-20, 1975.
I. Parberry, “A complexity theory of parallel computation,’’ Ph.D.
dissertation, Dep. Comput. Sci., Univ. of Warwick, May 1984. -. “Some oractical simulations of impractical parallel computers,” - -
in VLSI: Algorithms and Architectures, P. Bertollazzi and F. Lucio,
Eds. in Proc. Int. Workshop Parallel Comput. VLSI, North-
Holland, 1985, pp. 27-37.

[I71 -, “An improved simulation of space and reversal bounded
deterministic Turing machines by width and depth bounded uniform
circuits,” Inform. Proc. Lett., vol. 24, pp. 363-367, Apr. 1987.

[18] -, Parallel Complexity Theory, Research Notes in Theoretical
Computer Science.

[19] N. Pippenger, “On simultaneous resource bounds,” in Proc. 20th
Annu. IEEE Symp. Foundations Cornput. Sci., Oct. 1979, pp. 307-
311.

[20] W. L. Ruzzo, “On uniform circuit complexity,” J . Comput. S W .
Sci., vol. 22, pp. 365-383, June 1981.

[21] W. J . Savitch, “Relationships between nondeterministic and determi-
nistic tape complexities,” J. Cornput. Syst. Sci., vol. 4, no. 2 , pp.

London, England: Pitman, 1987.

177-192, 1970.

