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A Note  on Nondeterminism in Small, Fast Parallel Computers 

IAN PARBERRY 
Abstract-Nondeterministic analogues of the well-known classes NC 

and SC, d d  NNC and NSC, respectively, are investigated. Adding 
nondeterminism to SC leaves it in the domain of parallel computation 
since NSC E POLYLOGSPACE. That is, NSC is a subset of the class of 
languages computable by fast parallel computers. Adding noodeter- 
minism to NC appears to make it much more powerful since NNC = NP. 
It is clear that NSCE NNC, and probable that NSC C NNC. We provide 
further evidence for this conjeeture by showing that NSC is precisely the 
class of languages recognizable in simultaneous polynomial time and 
polylog reversals by a nondeterministic Turing machine with a read-only 
input tape and a single read-write work-tape. It is known that NNC is 
precisely the class of languages recognizable in simultaneous polynomial 
time and polylog reversals by a nondeterministic Turing machine with a 
read-only input tape and two read-write work-tapes. 

Index Terns-Crossing sequence, NC, nondeterminism, parallel com- 
putation thesis, parallel computers, reversal, SC, simultaneous resource 
bounds, space, time. 

I. INTRODUCTION 
The complexity classes NC and SC have been well studied in the 

recent literature. NC is the class of languages which can be accepted 
by small, fast parallel computers. NC remains the same class under 
many definitions of a “parallel computer” (see, for example, 
Dymond [41, Dymond and Cook 151, and Ruzzo [20]). Pippenger [191 
has demonstrated that NC is the class of languages which can be 
recognized by a deterministic Turing machine in polynomial time and 
polylog reversals (a reversal is said to occur when any tape head 
changes direction). SC is the class of languages which can be 
recognized by a deterministic Turing machine in polynomial time and 
polylog work-space (that is, not counting the space needed for the 
storage of the inputs). It is widely conjectured that SC # NC. More 
strongly, it is expected that NC !Z SC and SC !Z NC (see, for 
example, Cook [3]). 

We will consider the impact of nondeterminism on small, fast 
parallel computers. The effect of nondeterminism on sequential 
computers is well studied in the form of the P # NP problem [2], 
[13]. P is the class of languages recognized by fast sequential 
computers. P remains the same class under many definitions of 
“computer.” NP is the nondeterministic analogue of P. While the P 
# NP question is still open, a large amount of evidence in favor of 
the conjecture has been accumulated. There exist a large number of 
problems which have been shown to be NP-complete; that is, they 
are members of NP and have the property that if any one of them are 
members of P, then P = NP. Garey and Johnson [6] have gathered a 
large list of NP-complete problems. 

Nondeterministic analogues of the classes NC and SC, called NNC 
and NSC, respectively, can be defined in a natural manner using a 
standard nondeterministic Turing machine model with k one-way 
infinite work-tapes and a single read-only input tape (after the manner 
of Aho, Hopcroft, and Ullman [l]). A nondeterministic Turing 
machine runs in time T(n) and space S ( n )  if for all accepted inputs of 
size n there is an accepting computation which uses time at most T(n) 
and space at most S ( n ) .  A nondeterministic Turing machine runs in 
time T(n)  and reversals R ( n )  if for all accepted inputs of size n there 
is an accepting computation which uses time at most T(n)  and 
reversals at most R ( n ) .  The reversals and space are measured on the 
work-tapes only. We assume that the running time T(n) = Q(n)  and 
the space bound S ( n )  = n(log n). For definiteness, we define NC to 
be the class of languages recognizable in polynomial time and polylog 
reversals on a k-tape deterministic Turing machine, NNC to be the 
class of languages recognizable in polynomial time and polylog 
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reversals on a k-tape nondeterministic Turing machine, SC to be the 
class of languages recognizable in polynomial time and polylog space 
on a k-tape deterministic Turing machine, NSC to be the class of 
languages recognizable in polynomial time and polylog space on a k- 
tape nondeterministic Turing machine. 

The proof of Pippenger that NC is exactly the class of languages 
recognizable in polynomial size and polylog depth by uniform circuits 
[19] extends easily to our Turing machine model. The simulation of a 
uniform circuit by a Turing machine is straightforward since our 
Turing machine is a more general form of that used by Pippenger in 
that we do not count reversals on the input tape. Pippenger does not 
count the number of tapes required; two work-tapes are sufficient. 
Dymond [4] notes that three tapes are sufficient, but he does not 
distinguish between the input tape and the work-tapes. The simulation 
of our Turing machine by a uniform circuit appears in Parberry [ 151, 
[ 161. An improved simulation with tighter resource bounds appears in 
Parberry [17], [18]. Suppose we define a nondeterministic uniform 
circuit to be a uniform circuit augmented with a polynomial number 
of auxiliary inputs. Such a circuit accepts its input if there is an 
assignment to the auxiliary inputs that results in the output having 
value 1. It is easy to show that NNC is exactly the class of languages 
recognizable in polynomial size, polylog depth, by a nondeterministic 
uniform circuit family. 

Let POLYLOGSPACE denote the class of languages recognizable 
in polylog space on a Turing machine. By Savitch’s theorem [2 11, the 
Turing machine may be either deterministic or nondeterministic. 
POLYLOGSPACE is widely accepted to be the class of languages 
recognizable by fast parallel computers. Goldschlager [7], [9] has 
called this characterization the parallel computation thesis. NC is 
widely accepted to be the class of languages recognizable by small, 
fast parallel computers. Dymond [4], [5] has called this characteriza- 
tion the extendedparallel computation thesis. By Savitch’s theorem 
1211, NSC C POLYLOGSPACE; that is, languages in NSC can be 
recognized by fast parallel computers. 

II. THE RESULTS 
Although it is popularly conjectured that SC !Z NC, the opposite is 

true for the corresponding nondeterministic complexity classes. To 
see that NSC E NNC, note that NSC E NP and: 

Theorem I :  NNC = NP. 
Proof: Clearly NNC E NP. To see that NP C NNC, first 

observe that every language in P has a polynomial-size uniform 
circuit. This fact was first noted by Ladner [14]. (A more detailed 
proof appears in Parberry [18].) We will first demonstrate that P C 
NNC. Suppose L E P. From the above observation, there exists a 
polynomial-size uniform circuit CL which recognizes L. A polyno- 
mial-size, logarithmic-depth nondeterministic uniform circuit for L 
can be constructed as follows. The nondeterministic circuit guesses a 
value for every wire in CL and verifies that the guessed values are 
consistent and that the output is 1 .  The verification can be carried out 
by using a single layer of gates which corresponds exactly to the gates 
in C,, and a tree of AND gates of depth O(1og n). This shows that P 
E NNC. A similar argument shows that NP E NNC. If L E NP, 
then L can be recognized in polynomial time by a deterministic 
Turing machine augmented with a “random” tape provided we 
define acceptance of the input to mean that there exists a sequence of 
symbols which, when written on the random tape, causes the machine 
to deterministically enter the accept state on the given input. This is 
essentially the “guess-verify” Turing machine model of Garey and 
Johnson [6] .  A polynomial-size nondeterministic uniform circuit can 
be constructed from this Turing machine by applying the technique of 
Ladner to the deterministic portion of the computation. This can be 
simulated by a polynomial-size, logarithmic-depth nondeterministic 
uniform circuit as before. 0 

In light of Theorem 1 ,  it appears extremely likely that adding 
nondeterminism to small, fast parallel computers increases their 
power. Since NC C P, if NNC = NC then NP = P = NC. It is 
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widely conjectured that P # NP (that is, there are problems which 
are feasible to check on a sequential computer, but not feasible to 
solve), and that P # NC (that is, there are problems which can be 
feasibly solved on a sequential computer, but which cannot be solved 
on a small, fast parallel computer). As mentioned above, evidence is 
provided for the former conjecture by a large number of NP-complete 
problems. In a similar manner, evidence is provided for the latter 
conjecture by a large number of P-complete problems (see, for 
example, [8], [ 101, [ 1 11, and [ 141). If any P-complete problem can be 
demonstrated to be a member of NC, then P E NC. 

NSC and NNC superficially appear different since NSC remains 
the same even if only a single work-tape is allowed (by Theorem 7.2 
of [ 121) while in contrast it appears that two work-tapes are necessary 
to capture all of NNC. Certainly two tapes are sufficient, by use of 
the “reduction to sorting” technique of Pippenger [19]. We will 
show that NSC is precisely the class of languages recognizable in 
simultaneous polynomial time and polylog reversals by a nondeter- 
ministic Turing machine with a read-only input tape and a single 
read-write work-tape. We will call the latter class NNC,. 

Theorem 2: A nondeterministic single work-tape Turing machine 
which runs in time T(n)  and space S ( n )  can be simulated by a 
nondeterministic single work-tape Turing machine in time 
O(T(n).S(n)2 and reversals O(S(n)).  

Proof: (Sketch) The simulation takes place in four phases. 

In a single sweep, nondeterministically guess a sequence of 
configurations and a sequence of rules, interleaved so that each 
rule precedes the configuration to which it is to be applied. In the 
process, nondeterministically mark each cell in the configuration 
as either occupied or unoccupied by the tape head. 
Verify in a single sweep that the work-tape head is marked as 
occupying exactly one tape cell in each configuration, and that the 
final configuration has the accept state. 
Verify in a constant number of sweeps that the sequence of rules is 
consistent with the input, the guessed sequence of states, and the 
symbols under the head in each configuration. 
Verify that the head movements are consistent with the guessed 
rules. Initially all cells are unmarked. On the ith sweep, 1 5 i 5 
S ( n ) ,  do the following. When entering a configuration: 
a) Remember what rule is to be applied to get to the next 

configuration. 
b) Find the ith cell in the configuration (it will be the first 

unmarked cell). Remember whether the head was in the (i - 
1)st cell when passing over it. 
If the head was on the ith cell of the previous configuration, 
then do the following, else do nothing. If the head movement 
implied by the previous rule was “move left” and the (i - 
1)th cell was not scanned by the tape head, then fail. 
Otherwise, if there was no head movement, verify that the ith 
cell is scanned by the head. Otherwise, if the head movement 
was “move right,” remember to check the (i + 1)th tape cell 
when leaving the configuration in step d) below. Check that 
the symbol in cell i is consistent with the current rule. 
Mark the ith cell as visited, and move to the next configura- 
tion. 

c) 

d) 

The running time is dominated by Phase 4 which requires S ( n )  
sweeps, each taking time O(T(n) .S (n) )  and constant reversals. 0 

Corollary 3: NSC E NNC,. 
Theorem 4: A nondeterministic single work-tape Turing machine 

which runs in time T(n) and reversals R ( n )  can be simulated by a 
nondeterministic Turing machine in time O(T(n)*log T(n)) and 

Proof. (Outline) The Turing machine guesses a sequence of 
crossing sequences, verifying after each guess that the new crossing 
sequence matches its predecessor. The latter can be tested using an 
algorithm similar to that in Section 2.6 of Hopcroft and Ullman [12]. 
Our crossing sequences must contain, along with the sequence of 
states in which cell boundaries were crossed, a time stamp and a 
positive integer which indicates in the position of the input head. 

space O(R(n)*log T(n)). 0 

Thus, each crossing sequence must have length O(R(n)*log T(n)), 
which gives a space bound of O(R(n)-log T(n)). The running time is 
linear in the total length of the series of crossing sequences, that is, 

0 O( T(n) log T(n)) . 
Corollary 5: NNC, C NSC. 

JII. CONCLUSION 
While it is clear that NSC C_ NNC, it is unlikely that the two 

classes are equal. We have provided further evidence that this is the 
case by showing that NSC is precisely NNC restricted to one work- 
tape; two work-tapes are sufficient and appear necessary to capture 
all of NNC. Nondeterministic analogues of standard parallel com- 
plexity classes are intrinsically interesting. For example, NSC is a 
subset of the class of languages recognized by fast parallel computers, 
while NNC is exactly NP. It appears that adding nondeterminism to 
small, fast parallel computers increases their power. 
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